CheatSheeting.com Logo [PDF Book]
Home > Math Cheat Sheets > Sine Cheat Sheet
To build or customize your cheat sheet (table below) adjust the parameters (From, Step, Decimals) in this form and hit the Update button.
You could also enter the angles (in degrees) to calculate their sine directly on the table
: : :
[See also Cosine Cheat Sheet]
[Worksheet] [Printer friendly]
Sine of an Angle(in Degrees)
[sin(θ)]
 sin()  =  0.000000 
 sin()  =  0.052336 
 sin()  =  0.104528 
 sin()  =  0.156434 
 sin()  =  0.207912 
 sin()  =  0.258819 
 sin()  =  0.309017 
 sin()  =  0.358368 
 sin()  =  0.406737 
 sin()  =  0.453990 
 sin()  =  0.500000 
 sin()  =  0.544639 
 sin()  =  0.587785 
 sin()  =  0.629320 
 sin()  =  0.669131 
 sin()  =  0.707107 
 sin()  =  0.743145 
 sin()  =  0.777146 
 sin()  =  0.809017 
 sin()  =  0.838671 
 sin()  =  0.866025 
 sin()  =  0.891007 
 sin()  =  0.913545 
 sin()  =  0.933580 
 sin()  =  0.951057 
 sin()  =  0.965926 
 sin()  =  0.978148 
 sin()  =  0.987688 
 sin()  =  0.994522 
 sin()  =  0.998630 
 sin()  =  1.000000 
 sin()  =  0.998630 
 sin()  =  0.994522 
 sin()  =  0.987688 
 sin()  =  0.978148 
 sin()  =  0.965926 
 sin()  =  0.951057 
 sin()  =  0.933580 
 sin()  =  0.913545 
 sin()  =  0.891007 
 sin()  =  0.866025 
 sin()  =  0.838671 
 sin()  =  0.809017 
 sin()  =  0.777146 
 sin()  =  0.743145 
 sin()  =  0.707107 
 sin()  =  0.669131 
 sin()  =  0.629320 
 sin()  =  0.587785 
 sin()  =  0.544639 
 sin()  =  0.500000 
 sin()  =  0.453990 
 sin()  =  0.406737 
 sin()  =  0.358368 
 sin()  =  0.309017 
 sin()  =  0.258819 
 sin()  =  0.207912 
 sin()  =  0.156434 
 sin()  =  0.104528 
 sin()  =  0.052336 
 sin()  =  0.000000 
 sin()  =  -0.052336 
 sin()  =  -0.104528 
 sin()  =  -0.156434 
 sin()  =  -0.207912 
 sin()  =  -0.258819 
 sin()  =  -0.309017 
 sin()  =  -0.358368 
 sin()  =  -0.406737 
 sin()  =  -0.453990 
 sin()  =  -0.500000 
 sin()  =  -0.544639 
 sin()  =  -0.587785 
 sin()  =  -0.629320 
 sin()  =  -0.669131 
 sin()  =  -0.707107 
 sin()  =  -0.743145 
 sin()  =  -0.777146 
 sin()  =  -0.809017 
 sin()  =  -0.838671 
 sin()  =  -0.866025 
 sin()  =  -0.891007 
 sin()  =  -0.913545 
 sin()  =  -0.933580 
 sin()  =  -0.951057 
 sin()  =  -0.965926 
 sin()  =  -0.978148 
 sin()  =  -0.987688 
 sin()  =  -0.994522 
 sin()  =  -0.998630 
 sin()  =  -1.000000 
 sin()  =  -0.998630 
 sin()  =  -0.994522 
 sin()  =  -0.987688 
 sin()  =  -0.978148 
 sin()  =  -0.965926 
 sin()  =  -0.951057 
 sin()  =  -0.933580 
 sin()  =  -0.913545 
 sin()  =  -0.891007 

Customize the style of your Cheat Sheet

Exporting the Cheat Sheet to PDF

To export the cheat sheet as a PDF, you can follow these simple steps that leverage the browser's capabilities to save the printer-friendly version of the sheet as a PDF:
  1. Click on the Printer friendly link (here or above the table), or on the Worksheet link if you wanted to get the Worksheet instead of the Cheat Sheet.
  2. Press Ctrl + P (or Cmd + P on Mac) to open the print dialog
  3. In the print dialog, choose Save as PDF as the destination.
The specific steps may vary slightly depending on the browser being used. This enables you to create a portable and accessible version of the cheat sheet that you can refer to anytime, anywhere.

What Is the Sine of an Angle?

The sine of an angle is a concept from trigonometry, a branch of mathematics that deals with the relationships between the angles and sides of triangles. To understand it, let's break it down into simple steps:

Right Triangle Basics

Imagine you have a right triangle, which is a triangle with one angle that is exactly 90 degrees. The side opposite the 90-degree angle is called the hypotenuse. The other two sides are called the adjacent and opposite sides, depending on which angle you're focusing on.

Understanding the Sine Function

For any angle in a right triangle, the sine of that angle is defined as the ratio of the length of the opposite side to the length of the hypotenuse.

In a formula, it looks like this:

Sine of an angle(sin θ) = (Opposite Side) / (Hypotenuse)

Example

Let's say you have a right triangle where:

  • The angle you're interested in is 30 degrees.
  • The length of the side opposite this angle is 1 unit.
  • The length of the hypotenuse is 2 units.

Then, the sine of 30 degrees would be:

sin(30°) = 1 / 2 = 0.5

This means that for a 30-degree angle, the opposite side is half the length of the hypotenuse.

Why is it Useful?

The sine function helps you find unknown side lengths of triangles when you know some of the angles or other sides. It's also foundational in understanding waves, circles, and oscillations in more advanced math and physics.

Think of a ladder leaning against a wall. If you know the angle the ladder makes with the ground and the length of the ladder (the hypotenuse), you can use the sine function to find out how high up the wall the ladder reaches.

This is the basic idea of the sine of an angle-it's just a ratio that helps us understand the relationship between the sides of a right triangle.


More Math Cheat Sheets


 





Disclaimer | Privacy Policy | Feedback