CheatSheeting.com Logo [PDF Book]
Home > Math Cheat Sheets > Common Logarithm Cheat Sheet
To build or customize your cheat sheet (table below) adjust the parameters (From, Step, Decimals) in this form and hit the Update button.
You could also enter the values to evaluate directly on the table
: : :
[See also Natural Logarithms]
[Worksheet] [Printer friendly]
Common Logarithm (log x = log10x)
 log  =  0.0000 
 log  =  1.0000 
 log  =  1.2788 
 log  =  1.4472 
 log  =  1.5682 
 log  =  1.6628 
 log  =  1.7404 
 log  =  1.8062 
 log  =  1.8633 
 log  =  1.9138 
 log  =  1.9590 
 log  =  2.0000 
 log  =  2.0374 
 log  =  2.0719 
 log  =  2.1038 
 log  =  2.1335 
 log  =  2.1614 
 log  =  2.1875 
 log  =  2.2122 
 log  =  2.2355 
 log  =  2.2577 
 log  =  2.2788 
 log  =  2.2989 
 log  =  2.3181 
 log  =  2.3365 
 log  =  2.3541 
 log  =  2.3711 
 log  =  2.3874 
 log  =  2.4031 
 log  =  2.4183 
 log  =  2.4330 
 log  =  2.4472 
 log  =  2.4609 
 log  =  2.4742 
 log  =  2.4871 
 log  =  2.4997 
 log  =  2.5119 
 log  =  2.5237 
 log  =  2.5353 
 log  =  2.5465 
 log  =  2.5575 
 log  =  2.5682 
 log  =  2.5786 
 log  =  2.5888 
 log  =  2.5988 
 log  =  2.6085 
 log  =  2.6180 
 log  =  2.6274 
 log  =  2.6365 
 log  =  2.6454 
 log  =  2.6542 
 log  =  2.6628 
 log  =  2.6712 
 log  =  2.6794 
 log  =  2.6875 
 log  =  2.6955 
 log  =  2.7033 
 log  =  2.7110 
 log  =  2.7185 
 log  =  2.7259 
 log  =  2.7332 
 log  =  2.7404 
 log  =  2.7474 
 log  =  2.7543 
 log  =  2.7612 
 log  =  2.7679 
 log  =  2.7745 
 log  =  2.7810 
 log  =  2.7875 
 log  =  2.7938 
 log  =  2.8000 
 log  =  2.8062 
 log  =  2.8122 
 log  =  2.8182 
 log  =  2.8241 
 log  =  2.8299 
 log  =  2.8357 
 log  =  2.8414 
 log  =  2.8470 
 log  =  2.8525 
 log  =  2.8579 
 log  =  2.8633 
 log  =  2.8686 
 log  =  2.8739 
 log  =  2.8791 
 log  =  2.8842 
 log  =  2.8893 
 log  =  2.8943 
 log  =  2.8993 
 log  =  2.9042 
 log  =  2.9090 
 log  =  2.9138 
 log  =  2.9186 
 log  =  2.9232 
 log  =  2.9279 
 log  =  2.9325 
 log  =  2.9370 
 log  =  2.9415 
 log  =  2.9460 
 log  =  2.9504 

Customize the style of your Cheat Sheet

Exporting the Cheat Sheet to PDF

To export the cheat sheet as a PDF, you can follow these simple steps that leverage the browser's capabilities to save the printer-friendly version of the sheet as a PDF:
  1. Click on the Printer friendly link (here or above the table), or on the Worksheet link if you wanted to get the Worksheet instead of the Cheat Sheet.
  2. Press Ctrl + P (or Cmd + P on Mac) to open the print dialog
  3. In the print dialog, choose Save as PDF as the destination.
The specific steps may vary slightly depending on the browser being used. This enables you to create a portable and accessible version of the cheat sheet that you can refer to anytime, anywhere.

What is a Common Logarithm?

A common logarithm is simply a logarithm with base 10. It's often written as "log" without any base specified. So, when you see "log x", it means "log base 10 of x" or "log10x".

Breaking it Down

  1. Logarithm Definition:
    • A logarithm answers the question: "To what power must we raise a certain number (called the base) to get another number?"
    • For example, for base 10, the question is: "To what power must we raise 10 to get this number?"
  2. Common Logarithm:
    • The common logarithm uses 10 as the base.
    • Example: log10100 = 2 because 102 = 100.

Why is it Useful?

  • Simplifying Calculations: Logarithms turn multiplication into addition, which simplifies many calculations.
  • Scientific Notation: Logarithms are useful for dealing with very large or very small numbers, like those in scientific notation.
  • Solving Equations: They help solve equations where the variable is an exponent.

Intuition

Think of common logarithms as a way of measuring how many times you multiply 10 to get a number.

  • For big numbers: log1010000 = 4, because you multiply 10 four times (10 * 10 * 10 * 10 = 10000).
  • For small numbers: log100.001 = -3, because you divide 10 three times (10-3 = 0.001).

Key Points to Remember

  • Common logarithms have a base of 10.
  • log10x is often just written as log x.
  • It tells you the exponent needed for 10 to become x.

Some Properties of Common Logarithms

log 1 = 0

log xy = (log x) + (log y)

log x/y = (log x) - (log y)

log xn = n(log x)


More Math Cheat Sheets


 





Disclaimer | Privacy Policy | Feedback